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Ahstrr&--Three different hypotheses representing turbulent transport are investigated. The three models 
are the Van Driest model of turbulence, a modified NeeKovasxnay hypothesis and a combination of the 
kinetic energy of turbulence and the mixing length hypotheses. A model for the variable turbulent Prandtl 
number is developed. Numerical solutions are obtained using a modified Spalding-Patankar finite 
difference method. Several empirical constants are evaluated and predictions are then tested against 
experimental data and show very good agreement. The importance of a variable turbulent Prandtl number 

is demonstrated. 
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NOMENCLATURE 

constant, equation (6); 
Van Driest constant, equation (5); 
constant, equation (7); 
constant, equation (6); 
dissipation constant, equation (8); 
skin friction coefficient = 2t,/pU,2 ; 
turbulent diffusion constant, equation 

(9); 
dissipation term, equation (7); 
Von Karman’s constant; 
Prandtl’s mixing length; 
wall mass flux; 
total viscosity = eddy viscosity + kine- 
matic viscosity; 
Prandtl number; 
kinetic energy of turbulence = &x ; 
wall heat flux; 
Reynolds number; 
Stanton number = q”/pC,U,( T, - TJ; 
temperature; 
fluctuation in temperature; 

U, V, velocity components; 
u+, dimensionless velocity = U/V + ; 
U, fluctuating velocity component ; 

friction velocity = &&S; 
coordinate in streamwise direction; 
coordinate perpendicular to wall; 
dimensionless distance = y V ‘/v : 
thermal diffusivity; 
turbulent eddy diffusivity for heat; 
turbulent eddy diffusivity for momen- 
tum; 
generalized dependent variable, equa- 
tion (A.3); 
constant, equation (5); 
dynamic viscosity; 
kinematic viscosity = ,u/p; 
cross stream coordinate, equation (A.2); 
density; 
shear stress; 
stream function; 
momentum thickness. 

Notation 
( ),, free stream value; 

[ i;f, effective value. 
outer edge of boundary layer; 

( Ii, ith fluctuating’velocity component; 
( )I, inner edge of boundary layer (wall); 
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( )j, jth fluctuating velocity component; 

I?, 
turbulent value; 
value at wall; 

( L value at the location x along the plate. 

INTRODUCTION 

IN RECENT years phenomenological theories of 
turbulent shear flows have been the interest of 
many authors [l-5]. The purpose of the theories 
is to yield a universal predictive capability by 
including more of the physics of turbulent 
motion and less empirical formulae. Further 
work is needed to supplement these original 
hypotheses with either additional postulated 
relationships or further evaluation of the various 
universal numerical constants. 

Many investigators have made use of the 
empirical mixing length formulae and an excel- 
lent summary is given by Blom [6]. A funda- 
mental objection to the use of empirical mixing 
length formulae, even in their most developed 
form (Spalding [7], Reichardt [S] and Van 
Driest IS]), is that they are valid only when local 
equilibrium exists between generation and dissi- 
pation of turbulent energy. A further objection 
is the fact that the Reynolds stress terms are 
only related to the local mean velocity field, 
while the effect of the past history of the boundary 
layer is ignored. These objections led to the 
Kolmogorov [lo] and Prandtl [l l] turbulent 
energy hypothesis relating the Reynolds stresses 
to the turbulent kinetic energy which is governed 
by a rate equation. In this way the local state 
of the turbulence is related to the other turbulent 
properties such as the length scale and the 
kinetic energy of the fluctuations. 

Improvements were made to the mixing 
length approaches by Patankar and Spalding 
[4, 121 wherein a modified Van Driest [9] eddy 
viscosity model was proposed. This is a model 
in which the local damping is affected by the 
local shear rather than the wall shear. The 
problem of history, however, still remained. 

Townsend [13] proposed a turbulent con- 
stitutive equation that relates the fluctuation 
correlations to the turbulence energy and the 

mean flow field which allows boundary layer 
history to be brought into view. Wolfshtein [S] 
used Townsend’s equation in a one-dimensional 
form to obtain velocity and temperature profiles 
for Couette flow. Kearney et al. [14] solved 
Townsend’s equation for turbulent kinetic energy 
in the outer region. Their primary interest was 
in the effect of free stream turbulence on heat 
transfer and they presented Stanton number 
results only. 

Harlow and Nakayama [3] have also de- 
veloped a turbulent kinetic energy equation as 
well as an equation which describes the local 
turbulent energy dissipation. Ziemniak [ 151 
used Harlow and Nakayama’s set of equations 
to investigate two-dimensional channel flow. No 
attempt has been made to use their equations 
for a boundary layer flow. 

A different approach was taken by Nee and 
Kovasznay [l, 21 wherein they postulate a rate 
equation to govern the effective viscosity. The 
effects of advection, diffu%ion, generation and 
decay are each represented by an appropriate 
term leaving two empirical constants to be 
determined by experiment. 

To apply the various turbulent transport 
theories to heat or mass transfer, one must specify 
a turbulent Prandtl or Schmidt number. Most 
workers have solved the energy equation by 
assuming a constant value of Pr, of about @8 or 
they assume Reynolds analogy would hold. 
Patankar and Spalding [4] have suggested that 
Pr, remains uniform at a value near 0.9. Powell 
and Strong [16-J have also assumed constant 
turbulent Prandtl number of 0.9. A review of 
the published experimental values of Pr, by 
Blom [6] and Simpson et al. [17] demonstrates 
that a constant value of Pr, is incorrect. Experi- 
mental results [6, 171 have clearly shown that 
Pr, is a function of distance from the wall. 

The problem to be investigated in this work 
is a stationary, twodimensional, incompressible 
flow over a flat plate with negligible viscous 
dissipation. The overall temperature difference 
(T, - T,) will be assumed small such that the 
fluid properties may be taken constant at some 
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FIG. 1. Sketch of problem investigated. 

average temperature. A sketch of the flow situa- 
tion is presented in Fig 1. The present work will 
compare the predictions of the following models 
for the eddy viscosity: 

(1) The Van Driest mixing length model 
utilized throughout the entire boundary layer. 

(2) A rate equation governing the distribution 
of the total viscosity, n = v + cy, solved in the 
outer region with the inner region being des- 
cribed by an eddy viscosity model. 

(3) An equation describing the turbulent 
kinetic energy solved in an outer region with 
the eddy viscosity being extracted through a 
Prandtl-Wieghardt type relation and the near 
wall region described by an eddy viscosity 
model. 

. 

Further, the commonly used model for turbu- 
lent heat transfer will be modified to account 
for the variation of turbulent Prandtl number 
across the layer. This will yield a correlation that 
tits the available data of Pr, within the limits of 
the uncertainty envelope [17]. The effect of 
variable turbulent Prandtl number on heat 
transfer predictions will also be presented. It 
should be noted that the above mentioned 
developments also apply for turbulent mass 
transfer if one introduces turbulent Schmidt 
number instead of turbulent Prandtl number. 

GOVERN-ING EQUATIONS 

Incompressible, two-dimensional, steady, 
constant-property turbulent boundary layer 
flow on a flat plate is governed by the following 
equations 

(1) 

Ug + VaT =a ay ay 1 (V +,E,)Pr;:T 
ay 1 (3) 

where the effective Prandtl number is defined by 

Preff = !L3-&-2 = 1 + k&f/V) 
GI + EH Pr- ’ + Pr; ‘(EM/v) (4) 

where Pr, = Ed& is the turbulent Prandtl 
number. In the fully turbulent part of the 
boundary layer E,,, 9 v, that is Preff = Pr, while 
in the viscous sublayer Q., 4 v and Prefr = Pr. 

Models of turbulence 
Van Driest, Patankar and Spalding model. This 

model involves a near-wall-region formulation 
and another formulation for the outer region of 
the boundary layer. In the outer part, the mixing 
length, 1, is taken as uniform and proportional 
to the thickness of the layer, while near the wall, 
1 is proportional to distance from the wall. Thus. 

EM = k2y2 $ [l 
I I 

- exp( - yJliGM*)l2 

for0 < yk < Ay,, W 

for Jy, < yk 

where J,, k and A* are the undetermined con- 
stants. 
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Nee-Kovasznay model. A rate equation for 
total viscosity, n = v + I+, has been developed 
for the outer region. Combining this equation 
with the momentum equation forms a closed 
system that introduces two non-dimensional 
universal constants to be determined by matching 
calculated solutions to experiments. 

It is assumed that the total viscosity, n, obeys 
a rate equation of the form 

(6) 

where A and B arc the two undetermined con- 
stants. 

Equation (6) accounts for convection, diffu- 
sion, generation and decay of turbulence. Fur- 
thermore, it is assumed that turbulent diffusion 
occurs with n being its own exchange coefficient. 

Nee and Kovasznay [2] suggested that for 
the outer region y+ > y,‘, the velocity field U 
and the total viscosity field n are solved directly 
from the governing equations (l), (2) and (6). 
For the inner region, y+ < y,‘, the velocity 
field is described by the linear and logarithmic 
laws of the wall, In addition, a linear growth of 
the boundary layer thickness was assumed. In 
the present work, the total viscosity field n is 
solved from (5a) and (5b) in the inner region, 

Y+ G Y,‘, and (6) in the outer region, y+ 2 y,‘. 
The dimensionless distance y,’ is determined 
by matching the calculated solution to experi- 
mental data. 

Kinetic energy of turbulence. It was mentioned 
earlier that the objection to the mixing length 
hypothesis has led to the Kolmogorov-Prandtl 
[lo, 111 turbulence energy hypothesis, where 
the local state of turbulence is assumed to de- 
pend on a length scale and on the kinetic energy 
of the velocity fluctuations (q = $&). In an 
early phase of the present work, Harlow and 
Nakayama’s turbulence transport equations [3] 
were the main task. Two transport equations 
that govern the turbulent kinetic energy and 

dissipation of turbulent kinetic energy were to 
be solved. However, a system of large number 
of equations containing a large number of 
constants (assuming they are universal) and 
postulated relationships was not easy to solve. 
In this work, a postulated relationship for the 
dissipation term is, therefore, introduced instead 
of solving an additional rate equation for the 
dissipation of the kinetic energy of the lluctua- 
tions. 

The model chosen here is a combination of the 
kinetic energy hypothesis in the outer region 
and the Van Driest model of turbulence in the 
inner region. In other words, for 0 < y’ d y,‘. 
e,,,r is given by equations (Sa) and (5b) and, for 
Y+ > ,I,‘, Ed is given by 

( > au 2-Lj x ay (7) 

together with an expression relating the turbu- 
lent kinetic energy and dissipation, 

D = CL&Y (8) 

and an expression relating the turbulent kinetic 
energy and the eddy viscosity, 

q= 13!2 ( > cs Y 

where a, C, and C, are universal constants to be 
evaluated by comparison with experimental 
results. y,’ is taken to be 30 for equation (7) 
to be in the fully turbulent part of the boundary 
layer (y’ > 30). It is of importance to mention 
that in the turbulent core of the layer the length 
scales for turbulent diffusion and dissipation 
are identical and equal to the distance from the 
wall. 

Boundary conditions 
The conservation of mass and momentum, 

equations (1) and (2), require specification of the 
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velocity components at the wall and at the free- 
stream. That is, 

y = 0: u = 0, v = s/p 

y-roo:u= u,. (i0) 

The temperature form of the thermal energy 
equation requires specification of the tempera- 
ture at the wall and in the freestream 

y=O:T=T W 

y-+oo:T= T,. (11) 

For the thermal energy equation the heat flux 
at the wall can be specified as an alternative 
for the Dirichlet boundary condition. 

The total viscosity, n, and the turbulent kinetic 
energy, q, boundary conditions are 

y=O:n=v,q=O 

y+co:n=v,q=o. (12) 

Alternatively, the freestream turbulence may be 
specified at the boundary layer edge. 

METHOD OF SOLUTION 

The numerical procedure employed is a 
modification of the Spalding-Patankar pro- 
cedure [4,12] developed by Denny and Mills 
[18]. The method solves the linite-difference- 
versions of the nonlinear parabolic partial 
differential equations in a step-wise manner in 
the downstream direction. 

In the original work of Patankar and Spald- 
ing [4, 121 the near wall region was given a 
special treatment. A Couette Bow analysis was 
carried out and the resulting ordinary differential 
equations yielded the “slip value” relations. 
The finite difference scheme was matched to 
these slip values at some point in the layer. 

In the present work the slip value scheme has 
been discarded. The near wall region detail is 
maintained by the finite difference scheme once 
an appropriate initial profile is given at the 
starting point. In addition, the use of a variable 
cross-stream step size yields accurate results 
near the wall. Furthermore, Denny and Landis 
[19] suggested a modified transformation, the 

o* transformation, and compared it with the 
standard w-transformation. They have shown 
that, the o*-transformation yields more accurate 
results due to the well-behaved nature of the 
solution near the wall in the transformed plane. 
Also, more accurate computed wall gradients 
are attainable due to the reduced truncation 
error involved in the finite difference analogue 
of the differential equations. Further compu- 
tational details are given in Appendix A. 

TURBULENT PRANDTL NUMBER 

Experimental results have shown that p’t is 
not a constant across the boundary layer but a 
function of the distance from the wall [6, 171. 
P’, can be determined by measurements of 
velocity and temperature distributions in the 
boundary layer. 

Blom [6-J and Simpson et al. [17j presented 
a survey of experimental values of Pr,. The 
survey shows that p’, values are widely scattered 
even for the same Pr. Kestin and Richardson 
[20] showed that mercury experiments in pipes 
indicated that Pr, > 1 while gas experiments in 
pipes showed Pr, < 1. It is not clear whether 
Pr, is completely independent of the molecular 
Prandtl number. 

Experimental values of PY, obtained by 
Simpson et al. [17-J have shown that near the 
wall (y’ < 150) the local value of Pr, > 1. Near 
the wall Pr, depends on Pr since the molecular 
viscosity and Prandtl number govern momen- 
tum and heat transport. Rotta [21] suggested 
that for the outer region (y/6 > 0.1) Pr, can be 
expressed by 

Pr, = 0.95 - 0.45 (y/s)*. (13) 

Blom [6], however, presented a completely 
different trend for Pr,. He showed that Pr, in- 
creases with increasing y+ for small values of y +, 
is nearly constant for intermediate y+ values, 
and decreases in the outer region. 

For the calculation of heat transfer, the distri- 
bution of Pr, in the inner region is of primary 
importance, while in the outer region the distri- 
bution of Pr, is of secondary importance, for the 
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largest resistance to heat transfer is concentrated 
near the wall. Blom [6] showed that in the inner 
region of the thermal boundary layer Pr, < 1. 
Furthermore, a universal distribution for Pv, 
in the near wall region exists and has the form, 

eKU + --1--KU+-(KU+)2/2!-(KU+)3/ 

3!-(KU++4/4! 
fit= KU+ e -L-KU+-(KU+)2,‘2!-(KU+)J,‘3! 

(14) 
with K = 0.4. 

Model for turbulent Prandtl number 
The turbulent heat flux is commonly expressed 

as 
aT 

u,T' = - constant x a_M - 
f3Xi 

(15) 

where the constant is Pr; l. However, to account 
for the non-constancy of Pr, across the layer 
one needs to modify the model to one that 
satisfies the following requirements: 

(1) Accounts for the unequal loss of momen- 
tum and thermal energy from an eddy during its 
motion from an initial point to a nearby one. 

(2) Yields an expression for Pr, that depends 
on the laminar Pr in the inner region (low 
intensity region), For the largest resistance to 
heat transfer, which is governed by molecular 
Prandtl number, is concentrated near the wall. 

(3) In the outer region (high intensity region) 
the turbulent heat flux is expressed by an 
expression similar to that given by (15), i.e. 
independent of Pr. 

(4) Predicts Pr, values that fit the available 
data. 

To accomplish this, consider the diffusion of 
thermal energy from an eddy during its travel 
between two points before it breaks up and mixes 
with the surrounding fluid. One can reach the 
following expression 

One can derive an expression for & similar to 
equation (16). Accordingly, the turbulent Prandtl 

number is given by 

C, [l - exp( -.~~I 

Prt=C,Pr [l - exp(-&)I ‘17) 

where C,, C,, C, and C, are constants. It can be 
seen that for (sM/v) -+ 0, Pr, = C,jC,Pr and 
for (s,Jv) -+ 1;0, Pr, = C,C,/C, C,, inde~ndent 
of Pr. The above also applies to turbulent 
Schmidt number. 

RESULTS 

Results are presented for turbulent boundary 
layers of air on a flat plate. Heat transfer results 
were obtained with a wall to free stream 
temperature ratio, T,/T,, of 1X@. A value of 
0.9 for the turbulent Prandtl number is utilized 
for the constant Prandtl number results. 

Evaluation of the ern~~r~ca~ constants 
In the presentation of the different models, it 

was shown that each postulation involves some 
empirical constants(assuming they are universal). 
These constants are evaluated by matching the 
computed solutions to reliable experimental 
data. Comparisons with the data of Wieghardt 
[22] were carried out. This data has been 
accepted as being reliable by the Stanford 
Conference on turbulent boundary layers [22]. 
Accordingly, the following were obtained: 

(1) The constants A, k and I$* in the Spalding- 
Patankar model (S-P) were taken to be 0.09, 
@435 and 26 respectively. These values, sug- 
gested by the original authors [4, 123, were 
found to be the best lit to data. 

(2) For the Nee-Kovasznay model (N-K) 
A and B were taken to be 0.1 and 14) respectively. 
The values of y,’ was obtained by numerical 
experiments. A good fit was obtained with 

Y,’ = 200. The effect of y,* on the skin friction 
is shown in Fig. 2. 

(3) The constants a, CD and C, in the turbulent 
energy model {K-E) were found to be O-65, 
042 and 0.1455 respectively. These constants 
were evaluated by numerical experiments to 
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FIG. 2. Effect of y: on skin friction for (N-K) model. 

yield the best fit possible to the experimentat 
displacement thickness, skin friction, and velocity 
profiles. y,’ wa5 chosen to be X, for equation 
(7) to be within the turbulent core of the boun- 
dary layer. It should be mentioned that values 
of Q from @4 to 1.2 can be found in the literature 

Comparison with experimental data 
Skin friction results are presented in Fig, 3 

for the three,models (S-P), (N-K) and (K-E), 
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Frc. 3. Comparison of computed skin friction with Wieg- 
hardt’s data [22]. 
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Comparison of computed momentum thickness with 
Wieghardt’s data [22]. 

Excellent agreement with the Wieghardt data 
[22] for all models is shown. 

Momentum thickness predictions are shown 
in Fig. 4 for the different models. Excellent 
agreement with Wieghardt data [22J are ob- 
tained for models (N-K) and (K-E). For model 
(S-P) the predicted momentum thickness starts 
to deviate from the data at higher &_ However 
the prediction is still within 2-3 per cent of the 
data at high Re,. 

c 
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FIG. 5. Comparison of calculated and experimental velocity profiles, (S-P) model. 

Mean velocity profiles am presented in Figs. 
5-7 at different locations along the plate. Ex- 
cellent agreement with Wieghardt data [22] is 
given by the (S-P) model. Good agreement is 
given by the (N-K) model. The profile tends to 
coincide with experimental data at higher Re, 
as shown in Fig. 6. Velocity profiles predicted 
by the (K-E) model arc found to be flatter than 
the data for approximately 0.1 < y/6 < 0.5 as 
shown in Fig. 7. 

Eddy viscosity profiles predicted by the differ- 
ent models are shown in Figs. 8-10 at different 
stations along the plate. Values of E,& com- 
puted by both (S-P) and (N-K) models are 
almost the same. The (K-E) model gives higher 
predictions for E,,& than the others. Figures 
8-10 show that a universal profile for E&J vs y+ 

does exist for y+ < 100. 
Dimensionless velocity results am presented 

in Figs. 11-13 for the different models. The 

. 

data 1221 

0 01 02 03 0.4 05 0.6 07 0.8 0.9 

Y. in. 

FIG. 6. Comparison of calculated and experimental velocity profiles, (N-K) model. 
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0.1 
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0.1 0.2 0.3 0.4 05 0.6 0.7 0.6 o-s 

y, in. 

FIG. 7. Comparison of calculated and experimental velocity profiles, (K-E) model. 

(S-P) and (N-K) models give good agreement 
with Wieghardt’s data [22]. Predictions given 
by the (K-E) model are higher than the data for 
intermediate values of y+. 

Heat transfe predictions for constant turbu- 
lent Prandtl number are presented in Fig. 14 
for a temperature ratio of 1.04 and a turbulent 
Prandtl number of 0.9. Results are compared 

Station x. ft 

I 0.614 
2 I.59 
3 2.56 
4 3.07 
5 4.05 

with the data of Moffat and Kays [23]. The 
(S-P) model prediction is within 4 per cent of 
the experimental data. The predictions of both 
the (N-K) and the (K-E) models are in very 
good agreement with the data. 

Tiwbulent Prandtl number results 
Predicted values of Pr, are presented in Figs. 

Y+ 

FIG. 8. Computed eddy viscosity distribution, (S-P) model. 
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6” 

x. ft 
0.614 
1~26 
I ,59 
2.58 
3.07 
4.05 

IO0 101 102 103 104 

Yf 

FIG. 9. Computed eddy viscosity distribution, (N-K) model. 

Station x, ft 
: 0.614 

I.26 
3 I.59 
4 2.09 
5 2.58 
6 3.56 

i 
IO0 IO' 102 10" 104 

234 
56 

Y+ 

FIG. 10. Computed eddy viscosity distribution, (K-E) model. 
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FIG. 11. Comparison of calculated dimensionless velocity and Weighardt’s data [22], (S-P)‘model. 

15 and 16 and compared with the data of Blom 
[6] and Simpson et al. [17]. The constants 
C1, C,, C3 and C, were chosen to correlate 
with the data. Numerical experiments show that 
if C1 = 0.21, C, = 5.25, C3 = 0.20 and C, = 5, 
Pr, values will fall within the uncertainty 
envelope of the experimental results (Fig. 16). 
Predictions am also compared with equations 
(13) and (14) as depicted in Fig. 15. 

Heat transfer prediction with variable turbulent 
Prandtl number 
Figure 17 shows the calculated curves of 

Stanton number against Reynolds number for 
both constant and variable turbulent Prandtl 
number. The prediction is for a temperature 
ratio, T,/T, of 1.04 and the Van Driest model of 
turbulence. A value of 09 for the constant 
turbulent Prandtl number is recommended by 

275- 

25-O .- 

22.5 -- 

20.0 .. 

IT.5 -- 

15.0 .- 
+s 

12-5 ~' x =3-07 ft x =4.05ft 

IO.0 -’ ._.- Predicted - Predicted 

7-5 -. 

0 

IO" IO' IO2 IO" 
Y’ 

FIG. 12. Comparison of calculated dimensionless velocity and Weighardt’s data [22], (N-K) model. 
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25 0 

150 

'> 125 

100 

,A 
?’ 

/ 
” =1-59ft x =2.09ft 

‘2 Wleghordt . Wleghordt 

~ Predicted -PredIcted 

25 

IO" IO' IO7 IO' 

FIG. 13. Comparison of calculated dimensionless velocity and Weighardt’s data [22], (K-E) model. 

Spalding and Patankar [4] is used. The variable 
turbulent Prandtl number is computed by 
equation (17) with the numerical constants 
presented above. Figure 17 indicates that an 
improved prediction for the heat transfer to the 
wall is obtained if one considers the true varia- 
tion in Pr, across the layer rather than the 
commonly used approach of adopting a con- 
stant value of Pr,. 

DISCUSSION OF RESULTS 

Three phenomenological theories of turbu- 
lence have been investigated and compared with 

5 
0 ExperImental 

a 
- (S-P) model 
- -_- 

:: 
4 (N-Kjmodel 

.-.-.-. (K-E) model 

20 25 30 3.5 40 4.5 50 

Reynolds number, Re,x 16 

FIG. 14. Comparison of computed Stanton number with 
Moffat and Kay’s data [23]. 

experiment in their original or somewhat modi- 
lied form. An expression for variable turbulent 
Prandtl number is presented. 

It was found that Van Driest’s modified 
mixing length hypothesis [4] yielded excellent 
agreement with Wieghardt’s data for skin fric- 
tion coefficient and the velocity profiles. The 
predicted momentum thickness is higher than 
the experimental values at high Reynolds 
number. The model does, however, suffer from 
the following drawbacks: 

(1) It relates the state of turbulence of the 
fluid to the local length scale and the local mean 
velocity field. Hence ignoring the past history 
of the boundary layer. 

(2) Zero eddy viscosity in regions of zero mean 
velocity gradient. 

(3) It is only valid in the turbulent part of the 
boundary layer where the generation and 
dissipation of turbulent kinetic energy are in 
equilibrium. 

The Nee-Kovasznay theory [l] takes into 
account the relevant mechanism of turbulent 
motion but only with the minimum complica- 
tions. The equation accounts for the effects of 
convection, diffusion, generation, and decay of 
eddy viscosity based on simple analogy with the 
kinetic energy of turbulence. Nee and Kovasz- 
nay [l, 21 solved equation (6) in an outer region 
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FIG. 15. Comparison of predicted Pr, and data of Blom [6]. 
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FIG. 17. Comparison of computed Stanton number with Moffat and Kay’s data [23]. 

(Y’ > Y,‘). In the inner region (y’ < y,‘), the 
linear and logarithmic laws of the wall were 
assumed to describe the velocity profile. The 
linear law is based on a pure laminar sublayer 
adjacent to the wall. The concept of a laminar 
sublayer has been disproved as a result of 
measurements by Klebanoff [24] and Laufer 
[25]. The logarithmic law assumes that sH 9 V. 
Furthermore, both laws assume one dimensional 
analysis. To overcome these drawbacks, in the 
present work, the momentum equation was 
solved with an adopted turbulent model in the 
inner region (y’ < y,‘). The original values of 
the universal constants A and B suggested by 
Nee and Kovasznay [ 1] (A = @ 133 and B = 0.8) 
were also tested; but the revised values (A = @l 
and B = 1) rendered improved results. Excellent 
agreement of predictions with experimental 
values of skin friction, momentum thickness, 
and dimensionless velocity profiles [22] was 
found. Results were obtained for y,’ = 200. 
This value was determined by numerical ex- 
periments for the best lit to data (Fig. 2). 

Nee-Kovasznay’s equation should be ex- 
tended to the wall to make sure that there are 
no inconsistencies in the model. It should be 
mentioned here that in an early phase of the 
present work efforts were made to extend the 
theory to the wall. Unfortunately, instability in 

the numerical solution was encountered. Further 
work will be done along this line. 

The kinetic energy hypothesis which relates 
the local state of turbulence to a length scale 
and to the kinetic energy of fluctuations avoids 
the localness from which the mixing length 
hypothesis suffers. In deriving the kinetic energy 
of turbulence equation, one has to relate the 
Reynolds stress to the kinetic energy of fluctua- 
tions and to the rate-of-strain tensor. Also 
several transport flux approximations have to be 
introduced. This results in a large system of 
numerical constants and postulated relation- 
ships. Although the kinetic energy hypothesis 
provides more insight into the mechanisms of 
turbulence, it is difficult to apply. A system of 
equations involving several numerical constants 
and assumed functional forms is not easy to 
handle. In the present work unsuccessful efforts 
were made to apply Harlow-Nakayama’s [3] 
theory to two-dimensional turbulent boundary 
layers, by solving two additional conservation 
equations governing the kinetic energy and the 
scale function. For this reason, the scale equa- 
tion was deleted and an empirical postulation 
for the dissipation term was introduced. 

In principle, the kinetic energy hypothesis is 
valid for the viscous sublayer as well as in the 
fully turbulent region. However, in the present 
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work the kinetic energy equation is solved only 
in an outer region. This was done mainly to 
overcome the instability of the numerical solu- 
tion due to the very steep gradient of the kinetic 
energy in the wall region as well as to make use 
of the fact that in the outer region (y’ > 30) 
the length scale for turbulent diffusion and 
dissipation are identical and equal to the distance 
from the wall, y. By so doing two additional 
universal constants are eliminated which re- 
duces the complexity of the problem. 

In spite of the drawbacks from which the 
Van Driest model of turbulence suffers as a 
result of the crudeness of the assumed mixing 
process, results presented show good predictions 
of turbulent boundary layers over flat plates. 
The model is fairly simple to handle and gives 
good agreement with experimental data regard- 
ing the prediction of skin friction and heat 
transfer to the surface. Normally, for practical 
applications, one is interested in the wall fluxes 
rather than in predicting the profiles and not 
aiming at highly detailed predictions of the local 
turbulence field. The Nee-Kovasznay theory, 
although it involves a better description of the 
turbulent mechanism than that of the Van 
Driest model, is not easy to handle. One has to 
solve the rate equation for the total viscosity 
in an outer region and a different model in the 
inner region. A better description of the turbu- 
lent mechanism is given by the kinetic theory of 
turbulence hypothesis. Due to the additions 
postulations required and the empirical con- 
stants involved, this model is more difficult than 
the others. Results presented for this model are 
not as good as those of the others. This is mainly 
due to the fact that more numerical experiments 
are still needed for the fine adjustment of the 
numerical constants associated with the theory. 
In general the Nee-Kovasznay model, with an 
improved turbulent model for yf < y,‘, renders 
the best results of all. 

In spite of the fact that the turbulent Prandtl 
number is not a constant across the boundary 
layer, most authors [4,5, 12, 16-J have solved the 
thermal energy equation by adopting a con- 

stant value of Pr,. Experiments [6, 171 have 
shown that Prt can be 5 1 and a constant value 
of Pr, is incorrect. The model developed in this 
work-predicts Pr, values within the un~rtainty 
limits of the experimental results. In addition, 
the expression for Pr, has a much simpler form 
than the Jenkins model. Heat transfer Stanton 
number results shown indicate that improved 
results are obtained with variable Prandtl 
number. 

Finally, one can conclude that unless Nee- 
Kovasznay and kinetic energy of turbulent 
hypothesis are extended to the wall, the Van 
Driest model shoukl be used because the com- 
putations am simpler and much faster. Further- 
more, a lot of work is still required to test the 
universality of the empirical constants appearing 
in these hypotheses for different flow situations. 
A better approach to the problem would be by 
solving a set of equations describing the trans- 
port of momentum, turbulent kinetic energy, 
and dissipation of turbulent kinetic energy [3]. 
Further extension to the theory can be done for 
anisotropic turbulence by solving a full Rey- 
nolds stress transport equation, thus eliminating 
the necessity of postulating a relationship be- 
tween turbulent kinetic energy and eddy 
viscosity. 
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APPENDIX 

Conserwtion Equations in x _ w Coordinate,\ 

From the definition of the stream function I++. we have: 

where subscripts I and E denote the inner and outer edge 
of the boundary layer respectively. Introducing 

allows us to transform equations into a standard form suit- 
able for solution by the finite difference method. that is, 

1‘4.3) 
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CALCUL DE COUCHES LIMITES TURBUL~NT~S SUR PLAQUE PLANE AVEC 
DIFFERENTES THEORIES PHENOMENOLOGIQUES DE TURBULENCE ET UN 

NOMBRE DE PRANDTL TURBULENT VARIABLE 

R6srm&-On a Ctudie trois hypotheses differentes de transport par turbulence. Les trois mod&es sont celui 
de Van Driest, une hypothese modifiee de Nee-Kovasznay et une combinaison de l’energie cinetique de 
turbulence et des hypotheses de longueur de melange. On a dt%elopp& un modele pour le nombre variable 
de Prandtl turbulent. Des solutions numeriques sont obtenues par utilisation d’une mtthode modiflee aux 
diffhrences finies de Spalding-Patankar. Plusieurs constantes empiriques sont evalutes et la comparaison 
des estimations aux resultats exp&imentaux montre un trb bon accord. On prouve f’importance d’un 

nombre de Prandtl turbulent variable. 

BERECHNUNG VON TURBULENTEN GRENzSCHICHTEN OBER FLAC~-IEN PLATTEN 
MIT VERSCHIEDENEN PH~NOMENOLOGIS~~EN TURBULENZTHEORIEN UND 

VARIABLER ~URBULE~ER PRANDTL-ZAHL 

Z~~~~Drei verschiedene Hypothesen, die den T~bule~rans~~ beschreiben, wurden 
untersucht. Die drei Modelle sind das Turbulenzmodell von van Driest, eine modiflierte Hypothese van 
Nee-Kovaszn;ly uud eine Kombination von kinetischer Turbulenzenergie mit einer MischHngenhy- 
pothese. 

Es wurde ein Model1 fiir die variable turbulent P~ndtl-~~ entwickelt. Man erhielt u~e~sche 
Liisungen unter Verwendung einer modifizierten Bniten Differenzenmethode nach Spalding-Patankar. 

Einige empirische Konstanten warden geschiitzt. Die berechneten Werte wurdan daun mit experimen- 
tellen Damn verglichen. Die Ubereinstimmung ist gut. Die Bedeutung einer variablen turbulenten Prandtl- 

Zahl wurde gezeigt. 


